Relevance Feedback Models for Content-Based Image Retrieval
نویسندگان
چکیده
We investigate models for content-based image retrieval with relevance feedback, in particular focusing on the exploration-exploitation dilemma. We propose quantitative models for the user behavior and investigate implications of these models. Three search algorithms for efficient searches based on the user models are proposed and evaluated. In the first model a user queries a database for the most (or a sufficiently) relevant image. The user gives feedback to the system by selecting the most relevant image from a number of images presented by the system. In the second model we consider a filtering task where relevant images should be extracted from a database and presented to the user. The feedback of the user is a binary classification of each presented image as relevant or irrelevant. While these models are related, they differ significantly in the kind of feedback provided by the user. This requires very different mechanisms to trade off exploration (finding out what the user wants) and exploitation (serving images which the system believes relevant for the user).
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملProbabilistic relevance feedback approach for content-based image retrieval based on gaussian mixture models
A new relevance feedback (RF) approach for content-based image retrieval is presented. This approach uses Gaussian mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both the positive and negative feedback images. The retrieval is based on a recently proposed distance mea...
متن کاملA New Content based Image Retrieval System using GMM and Relevance feedback
Content-Based Image Retrieval (CBIR) is also known as Query By Image Content (QBIC) is the application of computer vision techniques and it gives solution to the image retrieval problem such as searching digital images in large databases. The need to have a versatile and general purpose Content Based Image Retrieval (CBIR) system for a very large image database has attracted focus of many resea...
متن کاملCombining Gaussian Mixture Models and Support Vector Machines for Relevance Feedback in Content Based Image Retrieval
A relevance feedback (RF) approach for content based image retrieval (CBIR) is proposed, which combines Support Vector Machines (SVMs) with Gaussian Mixture (GM) models. Specifically, it constructs GM models of the image features distribution to describe the image content and trains an SVM classifier to distinguish between the relevant and irrelevant images according to the preferences of the u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011